Войти
СтройДвор
  • Мастер-класс упаковка подарка моделирование конструирование цельная коробочка с откидной крышкой бумага клей скотч
  • Какая форма для выпечки лучше - силиконовая или металлическая?
  • Оконные проемы: устройство по госту Порядок выполнения работы
  • Уход за пеларгонией или геранью в домашних условиях
  • Радиаторные терморегуляторы Danfoss
  • Видео принцип работы терморегуляторов
  • Часы на газоразрядных индикаторах своими руками. Часы на газоразрядных индикаторах Газоразрядные часы своими руками

    Часы на газоразрядных индикаторах своими руками. Часы на газоразрядных индикаторах Газоразрядные часы своими руками

    Последнее время весьма популярны часы в духе ретро, на газоразрядных индикаторах. В забугорье такие часы зовутся "Nixie-clock". Увидев подобный проект на просторах интернета, я загорелся идеей собрать и себе такие-же.

    Что из этого получилось, читайте далее.

    Изучил варианты схем в интернете. Обычно Nixie-часы состоят из четырёх основных частей:
    1. управляющий микроконтроллер,
    2. высоковольтный блок питания,
    3. драйвер-дешифратор и собственно лампы.

    В большинстве схем в качестве дешифратора используются советские микросхемы К155ИД1 - «высоковольтные дешифраторы управления газоразрядными индикаторами». Мне найти такой чип не удалось, да и не очень хотелось использовать DIP-корпуса.

    Схема часов, применённые детали

    С учётом имеющихся компонентов я разработал свою версию схемы часов, в которой роль дешифратора отведена микроконтроллеру.


    Рисунок 1. Схема Nixie-часов на МК


    На микросхеме U4 MC34063 собран повышающий «dc-dc» преобразователь с внешним ключом на IRF630M в полностью изолированном корпусе. Транзистор взят с платы монитора.
    R4+Q1+D1 являются простым драйвером для ключа, быстро разряжая затвор. Без такого драйвера ключ сильно грелся и не получалось получить необходимого напряжения.

    R5+R7+С8 - обратная связь, определяющая выходное напряжение на уровне 166 Вольт. Транзисторы Q3-Q10 совместно с резисторами R8-R23 составляют анодные ключи, позволяя организовать динамическую индикацию.

    Резисторы R8-R11 задают яркость свечения цифр индикатора, а резистор R35 – яркость разделительной точки.

    Одноименные выводы всех ламп за исключением анода соединены между собой и управляются транзисторами Q11-Q21.

    Микроконтроллер ATMEGA8 управляет ключами ламп, он же опрашивает микросхему часов реального времени (RTC) DS1307 и кнопки.

    Диоды D3 и D4 обеспечивают генерацию запроса внешнего прерывания по нажатию на любую из кнопок управления.

    Питание контроллера выполнено через линейный стабилизатор 78L05.

    Лампы ИН-14 - индикаторы тлеющего разряда.

    Катоды в форме арабских цифр высотой 18 мм и двух запятых. Индикация осуществляется через боковую поверхность баллона. Оформление - стеклянное, с гибкими выводами.


    Так сказать э… калькулятор «Искра 122». Фото ~MERCURY LIGHT~


    Индикаторы ИН-14 от монструозного калькулятора «Искра 122» 1978 года выпуска светят без проблем и достались мне за «спасибо, что освободил мой балкон».

    Питать конструкцию можно постоянным напряжением 6 - 15 Вольт от внешнего БП. Потребление менее одного Ватта (70 мА при 10 В).

    Для сохранения хода часов при сбоях питания, предусмотрена батарейка CR2032. Если верить даташиту, потребление у DS1307 всего 500nA при батарейном питании, так что этой батарейки хватит очень надолго.

    Управление часами

    После подачи питания загорятся четыре нуля, и, если связь с микросхемой DS1307 установлена без ошибок, начнёт мигать разделительная точка.

    Установка времени выполняется с помощью трёх кнопок «+», «-» и «set». Нажатие на кнопку «set» погасит часовые разряды, далее, с помощью кнопок «+» и «-» настраиваются минуты. Следующее нажатие на кнопку «set» переведёт в режим настройки часов. Ещё одно нажатие на «set» сбросит в 0 секунды и переведёт часы в режим отображения времени «ЧЧ:ММ». Замигает разделительная точка.

    Удерживая кнопку "+" можно в любой момент посмотреть текущее время в режиме «ММ:СС».

    Плата

    Все основные части схемы разведены на одну двухстороннюю плату размером 135×53 мм. Плату изготавливал ЛУТ-ом и травил в перекиси водорода с лимонной кислотой. Слои платы соединял между собой путём впаивания в отверстия отрезков медного провода.

    Шаблоны платы совмещал на просвет по отметкам за пределами платы. Стоит напомнить, что верхний слой М1 в Sprint-Layout надо печатать зеркально.

    В ходе тестовой сборки были выявлены «косяки» в разводке. Пришлось анодные транзисторы проволочками подключать. Печатная плата в архиве к статье исправлена.

    Для программирования контроллера предусмотрены контактные площадки.

    Фото собранной платы часов


    Фото 1. Плата часов снизу


    Высоковольтный эл. конденсатор размещён горизонтально, для него я сделал пропил в текстолите. Я старался сделать собранную плату как можно миниатюрнее. Получилось всего 15 мм в толщину. Можно изготовить тонкий стильный корпус!

    Список деталей

    Файлы

    В архиве схема часов в большом разрешении, печатная плата в формате SL5 и прошивка для контроллера.
    Фьюзы необходимо настроить на работу от внутреннего генератора на 8 МГц.
    🕗 24/05/15 ⚖️ 819,72 Kb ⇣ 137 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
    Уже более 10 лет наш журнал существует только на мои средства.

    Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!

    Часы на ИН-14 лампах своими руками

    Давно хотел выложить статью,по изготовлению своими руками часов на лампах ИН-14 ,или как еще отзываются-часы в стиле стим-панк.

    Постараюсь поэтапно и останавливаясь на ключевых моментах изложить только самое главное. Индикация часов хорошо видна как днем так и ночью, и сами по себе очень красиво смотрятся,особенно в хорошем деревянном корпусе.Общем,приступаем.

    Схема устройства(для увеличения-как и везде-клик):

    В этих часах установлены газоразрядные индикаторы ИН-14. Также их можно заменить на ИН-8, естественно с учётом отличий по цоколёвке. Нумерация выводов индикаторов осуществляется по часовой стрелке со стороны выводов. У ИН-14 вывод 1 указан стрелкой.


    Характеристика часов:

    Напряжение питания, В 12
    Ток потребления, не более, мА 200
    Ток потребления типичный, мА 150
    Индикаторы типа ИН-14
    Формат индикации времени Часы\Минуты\Секунды
    Формат индикации даты Число\Месяц\Год
    Количество кнопок управления 2
    Будильников 2
    Дискретность установки времени срабатывания будильника, мин 5
    Программных градаций подстройки яркости индикаторов 5

    Микроконтроллер Atmega8 в корпусе TQFP. Работа часов в с контроллером в DIP корпусе не предусмотрена. Часы реального времени DS1307. Звуковой излучатель имеет встроенный генератор и напряжение питания 5В. Все необходимые файлы проекта - плата, прошивка контроллера-скачать

    Фьюзы:


    Еще фото:


    Повышающий преобразователь напряжения выполнен на микросхеме MC34063A. (MC33063A). По распространённости и стоимости она несколько уступает таймеру 555, на котором можно построить такой преобразователь, однако дешевле и доступнее MAX1771.

    Неполярные конденсаторы керамика, полярные - электролиты Low ESR. Если Low ESR недоступны, поставьте параллельно электролиту керамику или плёнку. Дроссель в повышающем преобразователе 220 мкГн на ток 1.2A. Минимальное расчётное значение дросселя составляет 180 мкГн, минимальный расчётный ток дросселя составляет 800 мA.


    Дешифраторами работают два корпуса К155ИД1. В коммутаторе анодного напряжения использована оптопара TLP627. Величины R23 и R24 нужно подбирать самостоятельно, в зависимости от степени свечения. Без них токи через точки превышают допустимый уровень. При монтаже индикаторы заталкиваем не до конца. Так как корпуса всех индикаторов индивудуальны их нужно будет выравнивать относительно печатной платы и между собой.

    Управление часами на ИН-14:

    Переход от режима к режиму происходит по кольцу кнопкой "MODE" .

    Установка значения производится кнопкой "SET" .

    Корректируемое значение либо мигает, либо имеет бОльшую яркость.

    Установка значения секунд заключается в их обнулении.

    Установка значения минут, часов, дня, месяца, года заключается в прибавлении 1 к текущему значению по кольцу до максимального значения, после чего значение обнуляется.

    Установка минут срабатывания будильника производится от нуля с дискретностью 5 минут (00-05-10-15:55).

    Если часы находятся не в основном режиме и нажатия кнопок прекращаются, то по истечении нескольких минут часы возвращаются в основной режим.

    Отмена звукового сигнала будильника производится кнопкой "SET" .

    При этом в следующий раз при достижении времени срабатывания сигнал будильника будет активирован. Запятые в десятках и единицах секунд говорят об активности будильников 1 и 2 соответственно. Режимы работы часов приведены в таблице. Красным условно обозначены ярко горящие разряды, оранжевым - тускло подсвеченные разряды, чёрным - погашенные разряды. Для времени: Ч - часы, М - минуты, С - секунды. Для даты: Д - день месяца (число), М - месяц, Г - год. Для установки будильника: 1 - будильник 1, 2 - будильник 2, Х - нет значения (погашен).

    Первое включение, программирование контроллера и настройка. Проверьте вначале правильность монтажа схемы часов. Затем проверьте цепи питания на предмет наличия короткого замыкания. Если не нашли, попробуйте подать на вход питание от источника 12В. Если не пошёл дым, проверьте напряжение цепи питания D5V0. С помощью подстроечного резистора RP1 установите на выходе повышающего преобразователя напряжение величиной 200В (для указанных номиналов). Подождите несколько минут. Элементы схемы не должны заметно нагреваться. Особенно это касается дросселя высоковольтного преобразователя. Его перегрев говорит о неправильно выбранном номинале или о конструктиве со слишком малым рабочим током. Такой дроссель надо заменить на более подходящий.


    С этого момента понадобится элемент питания ВТ1 типа CR2032. В крайнем случае закоротите контакты панельки элемента питания, но тогда время и дату будете устанавливать каждый раз при прекращении подачи питания.


    Запрограммируйте последовательно Flash и EEPROM микроконтроллера с помощью прилагаемых прошивок. Делать эту операцию нужно в указанной последовательности. На индикаторах будет отображаться "21-15-00 ". Секунды при этом "пойдут". Если же вы всё ещё не подключили BT1, то вместо времени и даты увидите на индикаторах что-то вроде "05-05-05 ".

    Установите значения времени, даты, будильников в соответствии с таблицей описания режимов работ. Когда дойдёте до настройки яркости, программно включите минимальную яркость индикаторов. Подстройте повышающий преобразователь таким образом, чтобы каждый из индикаторов светился с минимальной яркостью, но полностью. То есть, не должно быть так, что часть цифры индикатора светится, а часть нет. Затем программно выставьте максимальную яркость и проверьте свечение цифр индикаторов.

    Индикаторы не должны светиться слишком ярко, и не должно быть "объёмного" свечения. Коррекция яркости опять же производится с помощью RP1. После этого снова проверьте свечение при минимальной яркости и так далее до тех пор, пока не будут получены приемлемые результаты. Если же приемлемые результаты не будут получены, попробуйте подобрать номиналы анодных резисторов и повторить вышеуказанные действия.

    Такие часы будут выгодно отличаться от обычных китайских, на светодиодах, которые между прочим стоят немалых денег.

    Видео работы в нашей группе ВК-

    Но написать историю создания никак не удосуживался...
    Собственно, собрался с силами, и убил полдня на написание этого поста.
    Часы, по началу, не собирался делать, не сильно сложная задача, и потому было не очень интересно, однако, друг уговорил помочь с электроникой. Ну, что-ж, для меня не трудно, сварганить часики… как потом оказалось, не так уж и просто, если опыта в часо-строении нету:)

    По ТЗ было задумано:
    Из важного (реализовано в текущей версии ПО):


    1. Приглушение свечения ламп ночью (по фото-датчику), ибо освещают пол комнаты. Приглушение реализовано плавным изменением яркости.

    2. 10 значений яркости, на которую приглушается свечение.

    3. Настраиваемая функция гашения незначащего нуля.

    4. Настраиваемая функция переключения цифр на лампах, реализовал только плавное перетекание и простое переключение. Обычно используется только плавное перетекание. Потому и не выдумывал велосипедов, хотя по началу в азарте хотелось, однако потом холодный инженерный расчёт взял своё.

    5. Установка времени из функционального меню.

    6. Коррекция времени (реализована в самом RTC, мне осталось сделать лишь меню).

    7. Применен высокоточный кварцевый генератор, по результатам испытания обычный кварц плохо себя показал, плохая температурная стабильность, как следствие уход времени на +/- 10 секунд в сутки в зависимости от температуры и фазы луны:). Да, к сожалению на плате этого я уже не отображал. Кто захочет сам перекроит.

    8. Питание от сетевого адаптера 7-20V.

    9. Ионистор в цепи питания микросхемы часов реального времени(RTC), дабы время не сбивалось при отключениях сети.

    Из не важного (пока не реализовано в ПО за ненадобностью):

    1. Будильник с музыкальным звонком.

    2. Выбор мелодии для будильника из 10 штук.

    3. 3 ступени регулировки громкости будильника.

    4. RGB подсветка ламп.

    5. 10 предварительно настраиваемых оттенков подсветки ламп.

    6. Возможность установки периода, через который меняется оттенок подсветки ламп (из десяти предварительно настроенных).

    7. Регулировка яркости подсветки ламп вместе с яркостью свечения ламп при наступлении темноты.

    8. Измерение температуры (по сути получается измерение температуры печатной платы, поэтому решил в жизнь не проводить, хотя можно сделать выносной щуп).

    Сразу для себя решил, что преобразователь питания для ламп (12-180V) буду делать с управлением на микроконтроллере (обратная связь по сигналу на АЦП и в качестве источника тактирования - ШИМ модуль). В поисках информации про часы набрёл информацию и , как раз готовое решение для преобразователя, изобретать велосипед не стал, повторил и программный код, и схему преобразователя. Работу остальных частей часов писал с нуля применяя своё умение программирования и воображение:)
    Часы построены на шести лампах - ИН8-2:




    Сетка у них толстовата... но как потом оказалось, это совсем не мешает.
    На удивление, выводы у этих ламп гибкие, обычно, как я понял, лампы этого типа имеют выводы под панельку.
    Кстати, эти лампы сошли с конвейера, за 5 лет до моего рождения... Раритет!

    Поскольку делать просто так, на коленках, мне было не интересно, к разработке подошёл очень серьёзно, как настоящий инженер-электронщик, разработав полноценный проект, начиная от 3D моделей корпуса (AI):


    заканчивая 3D моделями плат (AD):





    И 3D сборками (AI):




    Кто в теме тот поймёт.
    Конструкция содержит 2 платы, по причине того, что нужна подсветка, и плата довольно таки сильно занята, и развести там 180V дорожки для ламп попросту было негде.

    Микроконтроллер использовал - Atmega32A.
    Декодеры для ламп - классически К155ИД1.
    Часы Реального Времени - M41T81 остались от рабочего барахла.
    В качестве плеера для будильника используется проект уважаемого ELM: линк . Использую отдельный микроконтроллер ATtiny45, ибо в один контроллер всё вместить не получается, ни по количеству выводов, ни по производительности, в проекте плеера используется высокочастотный ШИМ, который есть у ATtinyX5 но нету у Atmega32A и у Atmega64A тоже, что то более специфичное применять не решился. Есть вариант не требующей очень большой производительности, когда используется R-2R ЦАП на одном из портов микроконтроллера, но лишних 8 ног в микроконтроллере не нашлось, да и задача будильника приоритетной не была, по производительности тоже не факт, что микроконтроллер потянул бы. В будущем можно подумать на эту тему.
    Звук усиливается либо отдельным ключом, коммутирующим миниатюрный динамик через конденсатор на +12V, либо, для эксперимента заложенным, операционным усилителем, хотя думаю что тут нужен специализированный низковольтный усилитель, но в барахле у меня такого не нашлось.
    Для фото-датчика использовал китайский фоторезистор, честно говоря так и не понял бывают ли они какого другого сопротивления, этот в темноте имеет сопротивление 150кОм, при дневном свете 1,5кОм. Без маркировки. Так что что за оно, понятия не имею. Выглядит примерно так:



    Резистор для измерения температуры использовался в отличие от указанного на схеме на 47 кОм, при 25 градусах: B57421V2473J62 от Epcos. Установить установил, мерить температуру так и не мерил, ибо мерить получается температуру платы, об этом писал уже выше.
    В схеме так-же заложены ключи для подлкючения неоновых ламп разделителей разрядов часов, однако неонки эти, как оказалось светят другим оттенком оранжевого, и выглядят неестественно... в общем отказался я от них, так гораздо красивее.

    Светодиоды RGB SMD5050, какие получилось найти на нашем радиорынке на ждановичах... там у нас грустно с RGB светодиодами (и не только, по причине что продается только то, что пользуется спросм), потому это единственное что удалось найти более-менее подходящее по цене и свечению. Сразу скажу, если будете делать подсветку ламп, светодиоды вам нужны матовые (т.е. с матовым наполнителем, а не как у меня прозрачные)... ибо светящиеся кристаллы бликуют на стекле ламп цветными точками, что не очень красиво.

    Весь этап сборки отснять на фото не удалось, что есть выкладываю:
    Платы делал крамолиновским фоторезистом Positiv, тогда еще про плёночный фоторезитст только думал.







    Из-за того, что первый вариант корпуса предполагал иметь верхнюю крышку из полированной нержавейки, пришлось существенно выпендриться в конструкции печатной платы ламп: Перемычки делать лакированным проводом.
    Это второй вариант, который для сестрёнки:



    Это прототип:


    Решил что больше так делать не буду, трудоёмкий очень вариант, однако опыт интересный:)

    Кнопки управления размещаются в любом месте корпуса, и подпаиваются проводами к контактным площадкам на плате, для фото-датчика имеется отверстие в задней стенке корпуса.

    В итоге пока клепал прототип, решил второй экземпляр подарить сестрёнке, а корпус сделать из стеклотекстолита:


    Корпус был начерчен, изготовлен, погрунтован, и покрашен, высушен:). Больше вручную резать такие корпусы я не буду, лучше пусть это делает станок ЧПУ. Корпус вышел габаритными размерами: 193.2 х 59.2 х 27.5, "ножки" которые образовались по углам имеют высоту 4 мм.
    Фото корпуса после покраски к сожалению не осталось. Но надеюсь с верху на фотках можно оценить всю красоту задумки.

    Какие выводы сделал после постройки первого прототипа:


    1. Кварц нужен очень точный, чтобы настраивать не пришлось, обычный часовой не пойдёт. Пришлось перекроить схему на DS32kHz, у него точность +/- 1 минута в год. Есть вариант ещё лучше, DS3231S - тут всё в одной микросхеме, часы реального времени и точный кварц. Однако, их я уже не покупал, и так пришлось DS32kHz выписывать из Китаю.

    2. Плату разработал не самую удачную, преобразователь напряжения слишком близко к часам реального времени, единичные импульсные помехи могут проскакивать на вход кварцевого генератора часов реального времени. В связи с этим следует улучшить помехозащищённость по питанию, в цепь питания часов реального времени лучше включить пару дополнительных конденсаторов и дроссель, в следующей итерации реализую, тут пришлось защищаться от помех дополнительными навесными элементами. Следующий вариант часов будет построен так, чтобы преобразователь и часы реального времени находились в противоположных углах платы.

    3. Вариант конструкции с двумя платами хоть и имеет право на жизнь, и корпус получается меньше, однако трудоёмкость изготовления сильно повышается.

    4. Корпус - самая трудоёмкая часть, а именно выпиливание деталей и подгонка. Если будете повторять мой подвиг будьте готовы сразу.

    Схемы плат:

    Используя газоразрядные индикаторы, можно сделать очень интересные часы Nixie Clock. В этом плане у человека открывается много возможностей. Схемы для часов есть возможность использовать самые разнообразные. Дополнительно творческие люди могут подумать над интересным дизайном часов.

    Некоторые считают, что имеют множество недостатков, а потому лучше использовать люминесцентные аналоги, однако это заблуждение. В первом случае человек получает материал, который стабильно работает и не сильно перегревается. В то время как люминесцентные лампы довольно быстро выгорают, что является серьезной проблемой.

    Важные элементы часов на индикаторах

    Если не брать во внимание корпус устройства и непосредственно индикаторы, то основной деталью является микросхема. Именно она позволяет отображать в устройствах реальное время. Дополнительно в модель включаются транзисторы и конденсаторы. Для блоков питания в основном используются батареи. Трансформаторами, а также катушками индуктивности оснащаются далеко не все часы на газоразрядных индикаторах.

    Как собрать ручные часы с транзисторами СВ303?

    Часы на газоразрядных индикаторах набор транзисторов СВ303 включает биполярного типа. В первую очередь следует отметить то, что они практически не перегреваются во время работы. Если говорить о газоразрядных лампах, то их важно использовать новые, из магазина. В противном случае они в часах прослужат крайне мало. Для обозначения цифр чаще всего используют именно контакты.

    Микросхема для управления обычно применяется серии К15554, а относится она к классу трехканальных, выводов на блок питания имеет два. Конденсаторы наручные часы на газоразрядных индикаторах в основном эксплуатируют именно с малой емкостью. В некоторых случаях можно встретить в устройствах стабилизаторы. В данной ситуации нагрузка с транзисторов значительно уберется. В качестве корпуса вполне реально использовать обычную коробку.

    Схема устройств со стабилизаторами

    Схема часов на газоразрядных индикаторах со стабилизаторами в обязательном порядке должна включать импульсные конвертеры. Необходимы они в устройствах для того, чтобы передавать сигнал от микросхемы. Конденсаторы стандартная схема часов на газоразрядных индикаторах предполагает емкостью не более 50 пФ. Транзисторы, в свою очередь, включаются биполярного типа.

    Если рассматривать системы с тремя конденсаторами, то и выводов на микросхеме должно быть три. Предельное сопротивление транзисторы обязаны выдерживать 6 Ом. Если говорить о нагрузке тока, то она в часах в среднем составляет 74 А. В данном случае использовать двойные платы крайне не рекомендуется. Связано это с тем, что показатель выходного напряжения значительно возрастет. В результате человеку придется ставить предохранители.

    Часы с использованием катушки индуктивности

    Максимальную нагрузку способны выдерживать на уровне 5 А. Блок питания для их работы очень необходим. Непосредственно компиляционный процесс осуществляется в два этапа. В первую очередь к работе подключаются конденсаторы. В данном случае их используют только электролитического типа. На втором этапе попарно активизируются резисторы. Газоразрядные индикаторы в этой ситуации держат до 50 Ом. Чтобы обезопасить устройство, многие советуют использовать систему защиты, которая исключает короткие замыкания.

    Модели на выпрямителях с индикаторами ИН-12Б

    Индикаторы газоразрядные ИН-12Б с выпрямителями позволяют держать частоту в цепи на уровне 60 Гц. За счет этого напряжение на выходе не превышает 15 В. Стабилизаторы в платах, как правило, используются линейного типа. Защита от в данном случае очень важна. Для того чтобы транзисторы могли выдерживать большое сопротивление, используют их с маркировкой РР200.

    Биполярные элементы в часах, как правило, применяются редко. Непосредственно платы устанавливаются для часов серии К155. Тепловая проводимость у них довольно хорошая и в целом они отличаются отличными характеристиками. Преобразователи в системе используются довольно редко. В охлаждении резисторы в принципе не нуждаются, и это плюс. Газоразрядные индикаторы в этой ситуации сопротивление держат до 50 Ом.

    Варианты с датчиками температуры

    Часы на газоразрядных индикаторах с позволяют контролировать основные элементы в цепи. Как правило, заранее очень сложно рассчитать тепловую нагрузку на определенную пару резисторов. В результате установленный предохранитель может ситуацию не спасти. Также от повышения температуры в часах страдают трансформаторы. Когда на вторичную обмотку подается большое напряжение, ее целостность может быть нарушена.

    Часы с использованием преобразователей

    Преобразователи в часах чаще всего используются самые обычные. В данном случае они позволяют в устройстве не устанавливать трансформатор. Однако минусы в таком случае также имеются, и их следует учитывать. В первую очередь недостаток преобразователей заключается в большом напряжении на входе, которое порой может превышать 16 В. Согласование всех уровней в такой ситуации значительно усложняется.

    Переключение катодов может осуществляться с малой задержкой. Решить все эти проблемы можно при помощи микроконтроллеров. Специалисты советуют использовать их именно серии "Мега 8". Для регулировки часов понадобится всего три кнопки. Некоторые перед началом сборки затрудняются в выборе светодиодов. На сегодняшний день наиболее подходящими принято считать элементы с красным цветом. Смотреться в конечном счете они в квартире будут просто изумительно. Для цифр в газоразрядных лампах, как всегда, используют контакты.

    Система вентиляции в устройствах

    Система вентиляции в часах может быть различной. Самым простым способом для охлаждения делателей устройства принято считать естественную вентиляцию при помощи отверстий на корпусе. Сделать их можно с двух сторон сразу. Важно при этом понимать, что больше всего в часах перегревается именно преобразователь. Учитывая это, перекрывать его платой в корпусе крайне не рекомендуется. Если рассматривать модели с блоками питания на 15 В, то максимальная температура преобразователей там составит примерно 40 градусов. Это является нормой, и нет никакой необходимости оснащать часы Nixie Clock куллером.

    Схема часов с внутренними генераторами

    Схемы на газоразрядных индикаторах с внутренними генераторами предполагают использование блоков питания на 30 В. Внутренне сопротивление в данном случае повысится до 2 Ом. Нагрузка максимум на транзисторы оказывается 5 А. Для выбора тактового сигнала нужно использовать микроконтроллеры. Точность хода тока зависит исключительно от кварца. Транзисторы простые схемы на газоразрядных индикаторах, как правило, предусматривают биполярного типа.

    Датчики температуры устанавливаются довольно редко. Объясняется это тем, что в системе абсолютно не нужен трансформатор с вторичной обмоткой. В результате тепловая проводимость будет довольно низкая. Анодные ключи для портов применяются. Подходят они только для плат на три разъема. Микроконтроллеры серии "Мега 8" в данном случае будут уместными. Для прошивки платы необходим высокий порог мониторинга.

    Часы на конденсаторах РР22

    Часы на газоразрядных индикаторах на конденсаторах данного типа позволяют более стабильно передавать сигнал. Порог мониторинга в данном случае будет довольно высоким. Резисторы в часах используются только с сопротивлением не ниже 6 Ом. Напряжение на входе должно составлять не менее 6 В. Согласование уровней происходит только за счет переключения катодов.

    Преобразователи для конденсаторов данного типа подходят серии "Степ Ап". Дополнительно следует позаботиться о системе защиты, чтобы исключить случаи коротких замыканий. Микросхемы к конденсаторам используют только на два выхода. При этом портов может быть до пяти штук. Стабилизаторы для конденсаторов применяются в основном линейного класса. на входе должно минимум составлять 5 В.

    Есть ли часы с двумя микросхемами?

    Часы на газоразрядных индикаторах с двумя микросхемами на сегодняшний день встречаются довольно редко. Необходимы они для более быстрой синхронизации процесса. В этом случае переключение катодов ламп осуществляется за считанные нс. для таких часов использоваться не могут. Минимальный уровень сопротивления в данном случае должен находится на уровне 50 Ом.

    В свою очередь, транзисторы обязаны выдерживать напряжение тока в 30 А. Конвертеры в часах, как правило, устанавливают импульсного типа. За счет этого переключение на двоичный формат происходит быстро. Непосредственно согласование уровней происходит в микроконтроллере. Регулировать напряжение в устройстве можно за счет стабилизатора. Однако минимальная должна составлять 22 пФ.

    Модели на предохранителях КА445

    Данные предохранители по своему типу относятся к электролитическим. Предельную емкость они имеют ровно 10 пФ. В начале цепи они, как правило, располагаются перед транзисторами. Светодиоды в часах важно использовать с высокой пропускной способностью. На микросхеме должно быть предусмотрено как минимум три порта. При этом стабилизатор линейного типа припаивается обязательно. С высоким входным напряжением в значительной мере поможет справиться предохранитель.

    Если исключить использование в часах преобразователя, то можно взять трансформатор с вторичной обмоткой. Устанавливается он перед блоком питания. Предохранители специалисты советуют использовать только плавкого типа. Прослужат они в часах довольно долго. Перед кварцами резисторы важно устанавливать с пределом 33 Ом. Блок питания должен быть рассчитан на 15 В. В результате предельная частота в системе будет колебаться в районе 60 Гц.

    Вновь приветствую пользователей и выполняю обещание!

    Сегодня начинаю выкладывать подробный фотоотчет по изготовлению часов на газоразрядных индикаторах (ГРИ). За основу взят ИН-14.

    Все манипуляции в этом и следующих постах доступны для человека без опыта, достаточно только иметь немного сноровки. Работу разобью на несколько частей, каждая из которых будет подробно описана мною и выложена в сеть.

    Приступаем к первому этапу – травление плат. Исследовав литературу, нашел несколько технологий:

    1. . Для работы нужны три компонента: лазерный принтер, хлорное железо и утюг. Способ самый простой и дешевый. Минус у него только один – сложно переносить очень тонкие дорожки.
    2. Фото-резист . Для работы нужны следующие материалы: фото-разист, пленка для принтера, сода кальцинированная и УФ-лампа. Способ позволяет произвести травление плат дома. Минус в том, что стоимость его не из дешевых.
    3. Реактивно-ионное травление (РИТ) . Для работ нужна химически активная плазма, поэтому в домашних условиях не осуществим.

    Чаше всего применяют анодное травление. Процесс анодного травления заключается в электролитическом растворении металла и механическом отрывании окислов выделяющимся кислородом.

    Вполне объяснимо, что я выбрал метод ЛУТ для травления плат. Перечень необходимого оборудования и материалов должен выглядеть примерно так:

    1. Хлорное железо. Его купают в радиотоварах по цене 100-150 рублей за банку.
    2. Фольгированный стеклотектолит. Можно найти в магазинах радиотоваров, на радиобарахолках или заводах.
    3. Емкость. Подойдет обычный пищевой контейнер.
    4. Утюг.
    5. Глянцевая бумага. Подойдет самоклеящаяся бумага или однотонная страница глянцевого журнала.
    6. Лазерный принтер.

    ВАЖНО! Версия для печати должна быть зеркальной, так как при переводе изображения с бумаги на медь оно отобразится обратно.

    Нужно произвести разметку и отрезать кусок текстолита для платы. Это делают ножовкой по металлу, макетным ножом или, как в моем случае, бормашиной.

    После этого вырезал из бумаги эскиз будущей платы и приложил рисунком к текстолиту (с фольгированной стороны). Бумага берется с запасом для того, чтобы обернуть текстолит. Закрепляем листок с обратной стороны с помощью скотча для фиксации.

    Со стороны рисунка проводим по будущей плате утюгом несколько раз через лист А4. Понадобится не менее 2-х минут интенсивной «глажки» для перевода тонера на медь.

    Заготовку подставляем под струю холодной воды и легко снимаем бумажный слой (мокрая бумага должна свободно отходить сама). Если нагрев поверхности был недостаточным, то могут отойти небольшие кусочки тонера. Их дорисовываем дешевым лаком для ногтей. В итоге заготовка для платы должна имеет следующий вид:

    В приготовленной емкости готовим раствор хлорного железа и воды. Лучше использовать для этих целей горячую воду, это увеличит скорость реакции. От кипятка лучше отказаться, так как высокая температура деформирует плату. Готовая жидкость должна иметь цвет чая средней заварки. Плату помещаем в раствор и ждем, когда лишняя фольга полностью растворится.

    Если иногда помешивать раствор в емкости, то скорость реакции также увеличится. Для кожи рук хлорное железо не опасно, но пальцы могут окраситься.

    Для придания большей наглядности процессу, поместил плату в раствор частично. Какие должны произойти изменения видно на фото:

    Лишняя медь растворяется в составе примерно через 40 минут. После чего процесс травления можно считать завершенным. Осталось только сделать несколько отверстий. Проводим шилом разметку и сверлим дрелью небольшие дырки. Инструмент должен работать с высокими оборотами, чтобы сверло не съезжало. Результат работы должен выглядеть примерно так:

    Второй этап изготовления часов на ГРИ – пайка компонентов. Об этом буду рассказывать в следующем своем посте.

    Скачиваем:

    1. Программа ).
    • Пост про пайку компонентов – ;
    • Пост про прошивку микроконтроллера – ;
    • Пост про изготовление корпуса – .

    Удобный нарезатель бахромы для трансформаторов. Регулятор нагрева паяльника с индикатором мощности