Войти
СтройДвор
  • Уложить ДСП на пол своими руками — довольно простая задача
  • Самодельный приклад — от затыльника до спускового крючка Самодельное ложе для пневматики
  • Мастер-класс упаковка подарка моделирование конструирование цельная коробочка с откидной крышкой бумага клей скотч
  • Какая форма для выпечки лучше - силиконовая или металлическая?
  • Оконные проемы: устройство по госту Порядок выполнения работы
  • Уход за пеларгонией или геранью в домашних условиях
  • Площадь боковой поверхности разных пирамид. Как вычислить площадь пирамиды: основания, боковую и полную? Формула площади правильной пирамиды

    Площадь боковой поверхности разных пирамид. Как вычислить площадь пирамиды: основания, боковую и полную? Формула площади правильной пирамиды

    Введите количество сторон, длину стороны и апофему:

    Определение пирамиды

    Пирамида - это многогранник, в основании которого лежит многоугольник, а грани его являются треугольниками.

    Онлайн-калькулятор

    Стоит остановиться на определении некоторых составляющих пирамиды.

    У нее, как и у других многогранников, есть ребра . Они сходятся к одной точке, которая называется вершиной пирамиды. В ее основании может лежать произвольный многоугольник. Гранью называется геометрическая фигура, образованная одной из сторон основания и двумя ближайшими ребрами. В нашем случае это треугольник. Высотой пирамиды называется расстояние от плоскости, в которой лежит ее основание, до вершины многогранника. Для правильной пирамиды существует еще понятие апофемы - это перпендикуляр, опущенный из вершины пирамиды к её основанию.

    Виды пирамид

    Существуют 3 вида пирамид:

    1. Прямоугольная - та, у которой какое-либо ребро образует прямой угол с основанием.
    2. Правильная - у нее основание – правильная геометрическая фигура, а вершина самого многоугольника является проекцией центра основания.
    3. Тетраэдр - пирамида, составленная из треугольников. Причем каждый из них может быть принят за основание.

    Формула площади поверхности пирамиды

    Для нахождения полной площади поверхности пирамиды нужно сложить площадь боковой поверхности и площадь основания.

    Самой простой является случай правильной пирамиды, поэтому нею мы и займемся. Вычислим полную площадь поверхности такой пирамиды. Площадь боковой поверхности равна:

    S бок = 1 2 ⋅ l ⋅ p S_{\text{бок}}=\frac{1}{2}\cdot l\cdot p S бок = 2 1 ​ ⋅ l ⋅ p

    L l l - апофема пирамиды;
    p p p - периметр основания пирамиды.

    Полная площадь поверхности пирамиды:

    S = S бок + S осн S=S_{\text{бок}}+S_{\text{осн}} S = S бок + S осн

    S бок S_{\text{бок}} S бок - площадь боковой поверхности пирамиды;
    S осн S_{\text{осн}} S осн - площадь основания пирамиды.

    Пример решения задачи.

    Пример

    Найти полную площадь треугольной пирамиды, если её апофема равна 8 (см.), а в основании лежит равносторонний треугольник со стороной 3 (см.)

    Решение

    L = 8 l=8 l = 8
    a = 3 a=3 a = 3

    Найдем периметр основания. Так как в основании лежит равносторонний треугольник со стороной a a a , то его периметр p p p (сумма всех его сторон):

    P = a + a + a = 3 ⋅ a = 3 ⋅ 3 = 9 p=a+a+a=3\cdot a=3\cdot 3=9 p = a + a + a = 3 ⋅ a = 3 ⋅ 3 = 9

    Тогда боковая площадь пирамиды:

    S бок = 1 2 ⋅ l ⋅ p = 1 2 ⋅ 8 ⋅ 9 = 36 S_{\text{бок}}=\frac{1}{2}\cdot l\cdot p=\frac{1}{2}\cdot 8\cdot 9=36 S бок = 2 1 ​ ⋅ l ⋅ p = 2 1 ​ ⋅ 8 ⋅ 9 = 3 6 (см. кв.)

    Теперь найдем площадь основания пирамиды, то есть площадь треугольника. В нашем случае треугольник равносторонний и его площадь можно вычислить по формуле:

    S осн = 3 ⋅ a 2 4 S_{\text{осн}}=\frac{\sqrt{3}\cdot a^2}{4} S осн = 4 3 ​ ⋅ a 2

    A a a - сторона треугольника.

    Получаем:

    S осн = 3 ⋅ a 2 4 = 3 ⋅ 3 2 4 ≈ 3.9 S_{\text{осн}}=\frac{\sqrt{3}\cdot a^2}{4}=\frac{\sqrt{3}\cdot 3^2}{4}\approx3.9 S осн = 4 3 ​ ⋅ a 2 = 4 3 ​ ⋅ 3 2 3 . 9 (см. кв.)

    Полная площадь:

    S = S бок + S осн ≈ 36 + 3.9 = 39.9 S=S_{\text{бок}}+S_{\text{осн}}\approx36+3.9=39.9 S = S бок + S осн 3 6 + 3 . 9 = 3 9 . 9 (см. кв.)

    Ответ: 39.9 см. кв.

    Еще один пример, немного сложнее.

    Пример

    Основанием пирамиды является квадрат с площадью 36 (см. кв.). Апофема многогранника в 3 раза больше стороны основания a a a . Найти полную площадь поверхности данной фигуры.

    Решение

    S квад = 36 S_{\text{квад}}=36 S квад = 3 6
    l = 3 ⋅ a l=3\cdot a l = 3 ⋅ a

    Найдем сторону основания, то есть сторону квадрата. Его площадь и длина стороны связанны:

    S квад = a 2 S_{\text{квад}}=a^2 S квад = a 2
    36 = a 2 36=a^2 3 6 = a 2
    a = 6 a=6 a = 6

    Найдем периметр основания пирамиды (то есть, периметр квадрата):

    P = a + a + a + a = 4 ⋅ a = 4 ⋅ 6 = 24 p=a+a+a+a=4\cdot a=4\cdot 6=24 p = a + a + a + a = 4 ⋅ a = 4 ⋅ 6 = 2 4

    Найдем длину апофемы:

    L = 3 ⋅ a = 3 ⋅ 6 = 18 l=3\cdot a=3\cdot 6=18 l = 3 ⋅ a = 3 ⋅ 6 = 1 8

    В нашем случае:

    S квад = S осн S_{\text{квад}}=S_{\text{осн}} S квад = S осн

    Осталось найти только площадь боковой поверхности. По формуле:

    S бок = 1 2 ⋅ l ⋅ p = 1 2 ⋅ 18 ⋅ 24 = 216 S_{\text{бок}}=\frac{1}{2}\cdot l\cdot p=\frac{1}{2}\cdot 18\cdot 24=216 S бок = 2 1 ​ ⋅ l ⋅ p = 2 1 ​ ⋅ 1 8 2 4 = 2 1 6 (см. кв.)

    Полная площадь:

    S = S бок + S осн = 216 + 36 = 252 S=S_{\text{бок}}+S_{\text{осн}}=216+36=252

    Ответ: 252 см. кв.

    Какую фигуру мы называем пирамидой? Во-первых, это многогранник. Во-вторых, в основании этого многогранника расположен произвольный многоугольник, а стороны пирамиды (боковые грани) обязательно имеют форму треугольников, сходящихся в одной общей вершине. Вот теперь, разобравшись с термином, выясним, как найти площадь поверхности пирамиды.

    Понятно, что площадь поверхности такого геометрического тела составится из суммы площадей основания и всей его боковой поверхности.

    Вычисление площади основания пирамиды

    Выбор расчетной формулы зависит от формы лежащего в основании нашей пирамиды многоугольника. Он может быть правильным, то есть со сторонами одинаковой длины, или неправильным. Рассмотрим оба варианта.

    В основании – правильный многоугольник

    Из школьного курса известно:

    • площадь квадрата будет равна длине его стороны, возведенной в квадрат;
    • площадь равностороннего треугольника равна квадрату его стороны, деленному на 4 и умноженному на квадратный корень из трех.

    Но существует и общая формула, для расчета площади любого правильного многоугольника (Sn): надо умножить значение периметра этого многоугольника (Р) на радиус вписанной в него окружности (r), а затем разделить полученный результат на два: Sn=1/2P*r.

    В основании – неправильный многоугольник

    Схема нахождения его площади заключается в том, чтобы сначала разбить весь многоугольник на треугольники, вычислить площадь каждого из них по формуле: 1/2a*h (где а – основание треугольника, h – опущенная на это основание высота), сложить все результаты.

    Площадь боковой поверхности пирамиды

    Теперь рассчитаем площадь боковой поверхности пирамиды, т.е. сумму площадей всех ее боковых сторон. Здесь также возможны 2 варианта.

    1. Пусть у нас имеется произвольная пирамида, т.е. такая, в основании которой – неправильный многоугольник. Тогда следует вычислить отдельно площадь каждой грани и сложить результаты. Так как боковыми сторонами пирамиды по определению могут быть только треугольники, то расчет идет по упомянутой выше формуле: S=1/2a*h.
    2. Пусть наша пирамида – правильная, т.е. в ее основании лежит правильный многоугольник, и проекция вершины пирамиды оказывается в его центре. Тогда для вычисления площади боковой поверхности (Sб) достаточно найти половину произведения периметра многоугольника-основания (Р) на высоту (h) боковой стороны (одинаковую для всех граней): Sб=1/2 Р*h. Периметр многоугольника определяется сложением длин всех его сторон.

    Полная площадь поверхности правильной пирамиды найдется суммированием площади ее основания с площадью всей боковой поверхности.

    Примеры

    Для примера вычислим алгебраически площади поверхности нескольких пирамид.

    Площадь поверхности треугольной пирамиды

    В основании такой пирамиды – треугольник. По формуле Sо=1/2a*h находим площадь основания. Эту же формулу применяем для нахождения площади каждой грани пирамиды, также имеющей треугольную форму, и получаем 3 площади: S1, S2 и S3. Площадь боковой поверхности пирамиды является суммой всех площадей: Sб= S1+ S2+ S3. Сложив площади боковых сторон и основания, получим полную площадь поверхности искомой пирамиды: Sп= Sо+ Sб.

    Площадь поверхности четырехугольной пирамиды

    Площадь боковой поверхности - это сумма 4-ех слагаемых: Sб= S1+ S2+ S3+ S4, каждое из которых вычислено по формуле площади треугольника. А площадь основания придется искать, в зависимости от формы четырехугольника - правильного или неправильного. Площадь полной поверхности пирамиды снова получится путем сложения площади основания и полной площади поверхности заданной пирамиды.

    Полная площадь боковой поверхности пирамиды состоит из суммы площадей его боковых граней.

    В четырехугольной пирамиде различается два вида граней – четырехугольник в основании и треугольники с общей вершиной, которой образуют боковую поверхность.
    Для начала потребуется рассчитать площадь боковых граней. Для этого можно использовать формулы площади треугольника, а можно также воспользоваться формулой площади поверхности четырехугольной пирамиды (только в случае, если многогранник правильный). Если пирамида правильная и в ней известна длина ребра a основания и проведенной к нему апофемы h , то:

    Если по условиям даны длина ребра c правильной пирамиды и длина стороны основания a , то можно найти значение по следующей формуле:

    Если же дана длина ребра в основании и противолежащий ей острый угол у вершины, то можно рассчитать площадь боковой поверхности по соотношению квадрата стороны a к удвоенному косинусу половины угла α :

    Рассмотрим пример расчета площади поверхности четырехугольной пирамиды через боковое ребро и сторону основания.

    Задача: пусть дана правильная четырехугольная пирамида. Длина ребра b = 7 см, длина стороны основания a = 4 см. Подставим заданные значения в формулу:

    Мы показали расчеты площади одной боковой грани для правильной пирамиды. Соответственно. Чтобы найти площадь всей поверхности необходимо умножить результат на количество граней, то есть на 4. Если пирамида произвольная и ее грани не равны между собой, то рассчитать площадь необходимо для каждой отдельной стороны. Если в основании лежит прямоугольник или параллелограмм, то стоит вспомнить их свойства. Стороны у этих фигур попарно параллельны, а соответственно грани пирамиды будут также попарно одинаковы.
    Формула площади основания четырехугольной пирамиды напрямую зависит от того, какой четырехугольник лежит в основании. Если пирамида правильная, то площадь основания рассчитывается по формуле , если в основании лежит ромб, то потребуется вспомнить, как находится . Ели же в основании лежит прямоугольник, то найти его площадь будет довольно просто. Достаточно знать длины сторон основания. Рассмотрим пример расчета площади основания четырехугольной пирамиды.

    Задача: Пусть дана пирамида, в основании которой лежит прямоугольник со сторонами a = 3 см, b = 5 см. К каждой из сторон из вершины пирамиды опущена апофема. h-a =4 см,h-b =6 см. Вершина пирамиды лежит на одной линии с точкой пересечения диагоналей. Найдите полную площадь пирамиды.
    Формула площади четырехугольной пирамиды состоит из суммы площадей всех граней и площади основания. Для начала найдем площадь основания:


    Теперь рассмотрим грани пирамиды. Они попарно одинаковы, потому что высота пирамиды пересекает точку пересечения диагоналей. То есть, в нашей пирамиде есть два треугольника с основанием a и высотой h-a , а также два треугольника с основанием b и высотой h-b . Теперь найдем площадь треугольника по известной формуле:


    Теперь выполним пример расчета площади четырехугольной пирамиды. В нашей пирамиде с прямоугольником в основании, формула будет выглядеть так:

    Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

    Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

    Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

    Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

    Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.